2024-02-29

全面剖析PHP 数组底层实现逻辑

前言

php小编香蕉全面剖析php数组底层实现逻辑。php中的数组是一种灵活且强大的数据结构,背后的实现逻辑却是相当复杂的。在本文中,我们将深入探讨php数组的底层原理,包括数组的内部结构、索引与哈希表的关系,以及数组的增删改查操作的实现方式。通过了解php数组的底层实现逻辑,可以帮助开发者更好地理解和利用数组这一重要的数据结构。

数组的结构

一个数组在 PHP 内核里是长什么样的呢?我们可以从 PHP 的源码里看到其结构如下:

<code>// 定义结构体别名为 HashTable
<a style="color:#f60; text-decoration:underline;" href="https://www.php.cn/zt/58423.html" target="_blank">typedef</a> struct _zend_array HashTable;

struct _zend_array {
	// <strong class="keylink">GC</strong> 保存引用计数,内存管理相关;本文不涉及
	zend_refcounted_h gc;
	// u 储存辅助信息;本文不涉及
	u<strong class="keylink">NIO</strong>n {
		struct {
			ZEND_ENDIAN_LOHI_4(
				zend_uchar    flags,
				zend_uchar    nApplyCount,
				zend_uchar    nIteratorsCount,
				zend_uchar    consistency)
		} v;
		uint32_t flags;
	} u;
	// 用于散列函数
	uint32_t          nTableMask;
	// arData 指向储存元素的数组第一个 Bucket,Bucket 为统一的数组元素类型
	Bucket           *arData;
	// 已使用 Bucket 数
	uint32_t          nNumUsed;
	// 数组内有效元素个数
	uint32_t          nNumOfElements;
	// 数组总容量
	uint32_t          nTableSize;
	// 内部指针,用于遍历
	uint32_t          nInternalPointer;
	// 下一个可用数字<strong class="keylink">索引</strong>
	zend_long         nNextFreeElement;
	// 析构函数
	dtor_func_t       pDestructor;
};</code>
登录后复制
  • nNumUsednNumOfElements 的区别:nNumUsed 指的是 arData 数组中已使用的 Bucket 数,因为数组在删除元素后只是将该元素 Bucket 对应值的类型设置为 IS_UNDEF(因为如果每次删除元素都要将数组移动并重新索引太浪费时间),而 nNumOfElements 对应的是数组中真正的元素个数。

  • nTableSize 数组的容量,该值为 2 的幂次方。PHP 的数组是不定长度但 C 语言的数组定长的,为了实现 PHP 的不定长数组的功能,采用了「扩容」的机制,就是在每次插入元素的时候判断 nTableSize 是否足以储存。如果不足则重新申请 2 倍 nTableSize 大小的新数组,并将原数组复制过来(此时正是清除原数组中类型为 IS_UNDEF 元素的时机)并且重新索引。

  • nNextFreeElement 保存下一个可用数字索引,例如在 PHP 中 $a[] = 1; 这种用法将插入一个索引为 nNextFreeElement 的元素,然后 nNextFreeElement  自增 1。

_zend_array 这个结构先讲到这里,有些结构体成员的作用在下文会解释,不用紧张O(∩_∩)O哈哈~。下面来看看作为数组成员的 Bucket 结构:

<code>typedef struct _Bucket {
	// 数组元素的值
	zval              val;
	// key 通过 Time 33 <strong class="keylink">算法</strong>计算得到的哈希值或数字索引
	zend_ulong        h;
	// 字符键名,数字索引则为 NULL
	zend_string      *key;
} Bucket;</code>
登录后复制

数组访问

我们知道 PHP 数组是基于哈希表实现的,而与一般哈希表不同的是 PHP 的数组还实现了元素的有序性,就是插入的元素从内存上来看是连续的而不是乱序的,为了实现这个有序性 PHP 采用了「映射表」技术。下面就通过图例说明我们是如何访问 PHP 数组的元素 :-D。

全面剖析PHP 数组底层实现逻辑

注意:因为键名到映射表下标经过了两次散列运算,为了区分本文用哈希特指第一次散列,散列即为第二次散列。

由图可知,映射表和数组元素在同一片连续的内存中,映射表是一个长度与存储元素相同的整型数组,它默认值为 -1 ,有效值为 Bucket 数组的下标。而 HashTable->arData 指向的是这片内存中 Bucket 数组的第一个元素。

举个例子 $a['key'] 访问数组 $a 中键名为 key 的成员,流程介绍:首先通过 Time 33 算法计算出 key 的哈希值,然后通过散列算法计算出该哈希值对应的映射表下标,因为映射表中保存的值就是 Bucket 数组中的下标值,所以就能获取到 Bucket 数组中对应的元素。

现在我们来聊一下散列算法,就是通过键名的哈希值映射到「映射表」的下标的算法。其实很简单就一行代码:

<code>nIndex = h | ht-&gt;nTableMask;</code>
登录后复制

将哈希值和 nTableMask 进行或运算即可得出映射表的下标,其中 nTableMask 数值为 nTableSize 的负数。并且由于  nTableSize 的值为 2 的幂次方,所以 h | ht->nTableMask 的取值范围在 [-nTableSize, -1] 之间,正好在映射表的下标范围内。至于为何不用简单的「取余」运算而是费尽周折的采用「按位或」运算?因为「按位或」运算的速度要比「取余」运算要快很多,我觉得对于这种频繁使用的操作来说,复杂一点的实现带来的时间上的优化是值得的。

散列冲突

不同键名的哈希值通过散列计算得到的「映射表」下标有可能相同,此时便发生了散列冲突。对于这种情况 PHP 使用了「链地址法」解决。下图是访问发生散列冲突的元素的情况:

全面剖析PHP 数组底层实现逻辑

这看似与第一张图差不多,但我们同样访问 $a['key'] 的过程多了一些步骤。首先通过散列运算得出映射表下标为 -2 ,然后访问映射表发现其内容指向 arData 数组下标为 1 的元素。此时我们将该元素的 key 和要访问的键名相比较,发现两者并不相等,则该元素并非我们所想访问的元素,而元素的 val.u2.next 保存的值正是下一个具有相同散列值的元素对应 arData 数组的下标,所以我们可以不断通过 next 的值遍历直到找到键名相同的元素或查找失败。

插入元素

插入元素的函数 _zend_hash_add_or_update_i ,基于 PHP 7.2.9 的代码如下:

<code>static zend_always_inline zval *_zend_hash_add_or_update_i(HashTable *ht, zend_string *key, zval *pData, uint32_t flag ZEND_FILE_LINE_DC)
{
	zend_ulong h;
	uint32_t nIndex;
	uint32_t idx;
	Bucket *p;

	IS_CONSISTENT(ht);
	HT_ASSERT_RC1(ht);
	if (UNEXPECTED(!(ht-&gt;u.flags &amp; HASH_FLAG_INITIALIZED))) { // 数组未初始化
		// 初始化数组
		CHECK_INIT(ht, 0);
		// 跳转至插入元素段
		goto add_to_hash;
	} else if (ht-&gt;u.flags &amp; HASH_FLAG_PACKED) { // 数组为连续数字索引数组
		// 转换为关联数组
		zend_hash_packed_to_hash(ht);
	} else if ((flag &amp; HASH_ADD_NEW) == 0) { // 添加新元素
		// 查找键名对应的元素
		p = zend_hash_find_bucket(ht, key);

		if (p) { // 若相同键名元素存在
			zval *data;
			
			if (flag &amp; HASH_ADD) { // 指定 add 操作
				if (!(flag &amp; HASH_UPDATE_INDIRECT)) { // 若不允许更新间接类型变量则直接返回
					return NULL;
				}
				// 确定当前值和新值不同
				ZEND_ASSERT(&amp;p-&gt;val != pData);
				// data 指向原数组成员值
				data = &amp;p-&gt;val;
				if (Z_TYPE_P(data) == IS_INDIRECT) { // 原数组元素变量类型为间接类型
 					// 取间接变量对应的变量
					data = Z_INDIRECT_P(data);
					if (Z_TYPE_P(data) != IS_UNDEF) { // 该对应变量存在则直接返回
						return NULL;
					}
				} else { // 非间接类型直接返回
					return NULL;
				}
			
			} else { // 没有指定 add 操作
				// 确定当前值和新值不同
				ZEND_ASSERT(&amp;p-&gt;val != pData);
				// data 指向原数组元素值
				data = &amp;p-&gt;val;
				// 允许更新间接类型变量则 data 指向对应的变量
				if ((flag &amp; HASH_UPDATE_INDIRECT) &amp;&amp; Z_TYPE_P(data) == IS_INDIRECT) {
					data = Z_INDIRECT_P(data);
				}
			}
			if (ht-&gt;pDestructor) { // 析构函数存在
				// 执行析构函数
				ht-&gt;pDestructor(data);
			}
			// 将 pData 的值复制给 data
			ZVAL_COPY_VALUE(data, pData);
			return data;
		}
	}
	// 如果哈希表已满,则进行扩容
	ZEND_HASH_IF_FULL_DO_RESIZE(ht);

add_to_hash:
	// 数组已使用 Bucket 数 +1
	idx = ht-&gt;nNumUsed++;
	// 数组有效元素数目 +1
	ht-&gt;nNumOfElements++;
	// 若内部指针无效则指向当前下标
	if (ht-&gt;nInternalPointer == HT_INVALID_IDX) {
		ht-&gt;nInternalPointer = idx;
	}
    
	zend_hash_iterators_update(ht, HT_INVALID_IDX, idx);
	// p 为新元素对应的 Bucket
	p = ht-&gt;arData + idx;
	// 设置键名
	p-&gt;key = key;
	if (!ZSTR_IS_INTERNED(key)) {
		zend_string_addref(key);
		ht-&gt;u.flags &amp;= ~HASH_FLAG_STATIC_KEYS;
		zend_string_hash_val(key);
	}
	// 计算键名的哈希值并赋值给 p
	p-&gt;h = h = ZSTR_H(key);
	// 将 pData 赋值该 Bucket 的 val
	ZVAL_COPY_VALUE(&amp;p-&gt;val, pData);
	// 计算映射表下标
	nIndex = h | ht-&gt;nTableMask;
	// 解决冲突,将原映射表中的内容赋值给新元素变量值的 u2.next 成员
	Z_NEXT(p-&gt;val) = HT_HASH(ht, nIndex);
	// 将映射表中的值设为 idx
	HT_HASH(ht, nIndex) = HT_IDX_TO_HASH(idx);

	return &amp;p-&gt;val;
}</code>
登录后复制

 扩容

前面将数组结构的时候我们有提到扩容,而在插入元素的代码里有这样一个宏 ZEND_HASH_IF_FULL_DO_RESIZE,这个宏其实就是调用了 zend_hash_do_resize 函数,对数组进行扩容并重新索引。注意:并非每次 Bucket 数组满了都需要扩容,如果 Bucket 数组中 IS_UNDEF 元素的数量占较大比例,就直接将 IS_UNDEF 元素删除并重新索引,以此节省内存。下面我们看看 zend_hash_do_resize 函数:

重新索引的逻辑在 zend_hash_rehash 函数中,代码如下:

 总结

嗯哼,本文就到此结束了,因为自身水平原因不能解释的十分详尽清楚。这算是我写过最难写的内容了,写完之后似乎觉得这篇文章就我自己能看明白/(ㄒoㄒ)/~~因为文笔太辣鸡。想起一句话「如果你不能简单地解释一样东西,说明你没真正理解它。」PHP 的源码里有很多细节和实现我都不算熟悉,这篇文章只是一个我的 PHP 底层学习的开篇,希望以后能够写出真正深入浅出的好文章。

以上就是全面剖析PHP 数组底层实现逻辑的详细内容,更多请关注php中文网其它相关文章!

https://www.php.cn/faq/694543.html

发表回复

Your email address will not be published. Required fields are marked *